谜知网

首页 > 奇闻异事

奇闻异事

第四维空间(第四维空间动画)

bj0012023-12-21奇闻异事0

第四维空间是什么

四维空间不同于三维空间,四维空间指的是标准欧几里得空间,可以拓展到n维;通常所说时间是第四维即四维时空下的时间维度。四维空间的第四维指与x,y,z同一性质的空间维度。然而四维时空并不是标准欧几里得空间,时间的本质是描述运动的快慢。

通过一维、二维、三维空间的演变,人们提出了关于四维空间的一些猜想。尽管这些猜想现在并不能证明是正确的,但科学理论有很多是由猜想开始的。现今科学理论一般是基于现象总结规律,而关于四维空间的现象没有足够准确清晰的认识,或者看到了这种现象却并没有想到是四维空间引起的。

扩展资料:

轴对称性

1、对于四维空间,人们普遍认为空间有轴对称性,或是中心对称。譬如,倘若一个三维空间的人进入四维空间,并且按照适当的方式“旋转”一下再回到三维空间,那么他会被‘轴对称’一下。

当然,由于没有人进入四维空间,所以这只是一个从二维空间类比而得的假设,无法进行验证。但是关于时间轴的观点以及时空错乱瞬间的现象与这是相符的。

2、从二维空间的一个图形是不能在二维空间进行对称的,但进入三维空间,就可以通过进行翻转回到二维空间时,就可以实现对称,因为在二维空间是不能进行翻转的,只能旋转或平移。因此我们可以推测三维物体进入了四维空间,再回到三维空间可能物体会被“轴对称”一下。

参考资料来源:

百度百科-四维空间

四维空间是哪四维?

长、宽、高、时间。

四维即四个维度,它是由无数个三维组成的,而三维是由无数个二维组成的。其他高维度的组成方式以此类推。三维以上的维度统称高维度。四维空间的第四维指与x,y,z同一性质的空间维度。然而四维时空并不是标准欧几里得空间,时间的本质是描述运动的快慢。

四维空间不同于三维空间,四维空间指的是标准欧几里得空间,可以拓展到n维;四维时空指的是闵可夫斯基空间概念的一种误解。

人类作为三维物体可以理解四维时空但无法认识以及存在于四维空间,因为人类属于第三个空间维度生物。通常所说时间是第四维即四维时空下的时间维度。

三维空间:

三维空间是咱们现在人类日常所需要的长,宽,高所组成的空间,而在咱们平时说的三维空间中谈到的三维其实说的是欧几里德空间。

而在早期科学家发现的维度空间也是根据长,宽,高三种度量,来构思出的三维空间概念。而且大家说的三维空间在科学家们的说里,其实是三度空间。而在三维空间中人类只能运用长,宽,高三种量度,也就是数学,而在历史上很长时间,人类都是在用三维空间来当成我们现在所学习的数学模块。

只到二十世纪以后科学家们才真正运用三度空间来研究实际空间的其他可能性。比如:在三维空间的基础之上科学家们还发现了四维空间,五维空间,六维空间等。

什么是第四空间四维空间具体维数介绍

任何具有四维的空间都可以被称为四维空间。那么你对第四空间了解多少呢?以下是由我整理关于什么是第四空间的内容,希望大家喜欢!

什么是第四空间

四维空间是一个时空的概念。简单来说,任何具有四维的空间都可以被称为“四维空间”。不过,日常生活所提及的“四维空间”,大多数都是指爱因斯坦在他的《广义相对论》和《狭义相对论》中提及的“四维时空”概念。根据爱因斯坦的概念,我们的宇宙是由时间和空间构成。

时空的关系,是在空间的架构上比普通三维空间的长、宽、高三条轴外又多了一条时间轴,而这条时间的轴是一条虚数值的轴。

从零到四的空间有哪些

从零维空间到四维空间—浅谈几何中的纯概念研究

摘要

几何不一定是真实现象的描述,几何空间和自然空间并不能完全等同看待,纯概念的研究几何的发展是数学界的一个里程碑。从零维空间到三维空间,尤其是从三维空间到四维空间的发展更是几何学的的一次革命。

关键词

零维;一维;二维;三维;四维;n维;几何元素;点;直线;平面。

正文

n维空间概念,在18世纪随着分析力学的发展而有所前进。在达朗贝尔.欧拉和拉格朗日的著作中无关紧要的出现第四维的概念,达朗贝尔在《 百科 全书》关于维数的条目中提议把时间想象为第四维。在19世纪高于三维的几何学还是被拒绝的。麦比乌斯(karl august mobius 1790-1868)在其《重心的计算》中指出,在三维空间中两个互为镜像的图形是不能重叠的,而在四维空间中却能叠合起来。但后来他又说:这样的四维空间难于想象,所以叠合是不可能的。这种情况的出现是由于人们把几何空间与自然空间完全等同看待的结果。以至直到1860年,库摩尔(ernst eduard kummer 1810-1893)还嘲弄四维几何学。但是,随着数学家逐渐引进一些没有或很少有直接物理意义的概念,例如虚数,数学家们才学会了摆脱“数学是真实现象的描述”的观念,逐渐走上纯观念的研究方式。虚数曾经是很令人费解的,因为它在自然界中没有实在性。把虚数作为直线上的一个定向距离,把复数当作平面上的一个点或向量,这种解释为后来的四元素,非欧几里得几何学,几何学中的复元素,n维几何学以及各种稀奇古怪的函数,超限数等的引进开了先河,摆脱直接为物理学服务这一观念迎来了n维几何学。

1844年格拉斯曼在四元数的启发下,作了更大的推广,发表《线性扩张》,1862年又将其修订为《扩张论》。他第一次涉及一般的n维几何的概念,他在1848年的一篇 文章 中说:

我的扩张的演算建立了空间理论的抽象基础,即它脱离了一切空间的直观,成为一个纯粹的数学的科学,只是在对(物理)空间作特殊应用时才构成几何学。

然而扩张演算中的定理并不单单是把几何结果翻译成抽象的语言,它们有非常一般的重要性,因为普通几何受(物理)空间的限制。格拉斯曼强调,几何学可以物理应用发展纯智力的研究。几何学从此开始割断了与物理学的联系而独自向前发展。

经过众多的学者的研究,遂于1850年以后,n维几何学逐渐被数学界接受。

以上是n维几何发展的曲折历程,以下是n维几何发展的一些具体过程。

首先,我们将点看作零维空间,直线看作一维空间,平面看作二维空间,并观察以下公设:

属于一条直线的两个点确定这条直线。 1.1

属于一条直线的两个平面确定这一条直线。(比较这个公设和公设1.1)。 1.2

属于同一个点的两条直线也属于同一个平面。(公设1.2的推论) 1.3

属于同一个平面的两条直线,也属于同一个点。 1.4