谜知网

首页 > 奇闻异事

奇闻异事

世界十大光学家(世界十大光学家排行榜)

bj0012024-04-27奇闻异事0

世界三大光学巨头是?

世界三大光学巨头是卡尔蔡司、徕卡和施耐德。

1、卡尔蔡司

卡尔蔡司厂商是来自德国的镜头厂商品牌,它属于国际一流的镜头厂商。卡尔蔡司镜头拥有百年研究与制造镜片的历史,在西方第二次工业革命后期各种高新技术出现的前提下,卡尔蔡司是率先开展多领域光学仪器镜头研究与制造的镜头厂商之一,拥有百年的技术沉淀与硕果累累的研究成就。

2、徕卡

徕卡是德国除卡尔蔡司以外知名度最高的厂商,徕卡镜头厂商的前身是徕兹,这家镜头厂商诞生于20世界初德国的一个中西部小镇。徕卡镜头厂商致力于国际一流品牌相机镜头的研究与生产,徕卡镜头厂商拥有差不多百年的镜头研究与生产的历史,由它所生产的镜头产品在质量上是无所指摘。

3、施耐德

施耐德是继卡尔蔡司、徕卡之后,国际上首批从事大画幅座机与高品质放大镜头研发与生产的厂商。施耐德镜头厂商与徕卡、卡尔蔡司等镜头厂商都有合作关系,三者各取所需。

相关报道:世界光学三巨头鏖战手机圈

2021年3月8日,瑞典名知相机制造商哈苏宣布与一加手机达成战略合作。至此徕卡、蔡司、哈苏均在手机圈锁定了战略合盟友,徕卡深度捆绑华为、蔡司与vivo结盟。几年前被联想收购的摩托罗拉,曾在手机中加持哈苏模块。哈苏再度拍马杀入手机圈为行业带来了更多遐想。

根据市场调研机构IDC发布的《2021年中国智能手机市场10大预测》报告显示,预测2021年智能手机将在摄像头、屏幕、续航等方面将加速渗透,与全球知名的相机或镜头品牌合作,或许将成为厂商们差异化竞争的一条必由之路。

其他光学家有哪些?

伊本·海赛木(约965~约1039年),中世纪阿拉伯学者。又译为阿尔哈曾,曾简译为海桑 。在光学、医学、天文学和数学方面都有重大贡献。11世纪初,埃及流行眼病,当时在开罗的天文中心工作的伊本·海赛木根据医师们的经验,特别是通过他自己的一些有关反射、折射、暗室视觉等实验,仔细研究了人的视觉。在其名著《光学宝鉴》中,他否定了人眼对外发光的旧视觉观念及提出由物体发出光线锥而引起视觉的观点;他所提出的人眼结构和眼球内的三种透明体的名称沿用至今 ;他明确入射光与反射光共面及球面反射成像原理;他还讨论了光之折射和玻璃球的放大像的作用。除《光学宝鉴》外,他还有几何学著作及一些保留下来的手稿,其他均已散失。

笛卡尔

勒奈·笛卡尔(1596~1650年),出生于法国,是法国数学家、科学家和哲学家。

笛卡尔不仅在哲学领域里开辟了一条新的道路,同时笛卡尔又是一勇于探索的科学家,在物理学、生理学等领域都有值得称道的创见,特别是在物理学方面做出了有益的贡献。从1619年读了约翰尼斯·开普勒的光学著作后,笛卡儿就一直关注着透镜理论,并从理论和实践两方面参与了对光的本质、反射与折射率以及磨制透镜的研究。他把光的理论视为整个知识体系中最重要的部分。

笛卡尔运用他的坐标几何学从事光学研究,在《屈光学》中第一次对折射定律提出了理论上的推证。他认为光是压力在以太中的传播,他从光的发射论的观点出发,用网球打在布面上的模型来计算光在两种媒质分界面上的反射、折射和全反射,从而首次在假定平行于界面的速度分量不变的条件下导出折射定律;不过他的假定条件是错误的,他的推证得出了光由光疏媒质进入光密媒质时速度增大的错误结论。他还对人眼进行光学分析,解释了视力失常的原因是晶状体变形,设计了矫正视力的透镜。

威里布里德·斯涅耳

威里布里德·斯涅耳(1591~1626年),荷兰莱顿人,数学家和物理学家,曾在莱顿大学担任过数学教授。斯涅尔最早发现了光的折射定律,从而使几何光学的精确计算成为了可能。斯涅耳的这一折射定律(也称斯涅耳定律)是从实验中得到的,未做任何的理论推导,虽然正确,但却从未正式公布过。只是后来惠更斯和伊萨克·沃斯两人在审查他遗留的手稿时,才看到这方面的记载。

首次把折射定律表述为今天的这种形式的是笛卡儿,他没做任何的实验,只是从一些假设出发,并从理论上推导出这个定律的。笛卡儿在他的《屈光学》(1637)一书中论述了这个问题。

折射定律是几何学的最重要基本定律之一。斯涅耳的发现为几何光学的发展奠定了理论基础,把光学的发展大大地推进了一步。

惠更斯

克里斯蒂安·惠更斯(1629~1695年)于1629年4月14 日出生于海牙,是荷兰著名的物理学家、天文学家、数学家、他是介于伽利略与牛顿之间一位重要的物理学先驱,是历史上最著名的物理学家之一,他对力学的发展和光学的研究都有杰出的贡献。

1645~1647年在莱顿大学学习法律与数学;1647~1649年转入布雷达学院深造。在阿基米德等人著作及笛卡儿等人直接影响下,致力于力学、光波学、天文学及数学的研究。他善于把科学实践和理论研究结合起来,透彻地解决问题。因此,在摆钟的发明、天文仪器的设计、弹性体碰撞和光的波动理论等方面都有突出成就。

惠更斯原理是近代光学的一个重要基本理论。但它虽然可以预料光的衍射现象的存在,却不能对这些现象做出解释 ,也就是它可以确定光波的传播方向,而不能确定沿不同方向传播的振动的振幅。因此,惠更斯原理是人类对光学现象的一个近似的认识。直到后来,菲涅耳对惠更斯的光学理论作了发展和补充,创立了“惠更斯—菲涅耳原理”,才较好地解释了衍射现象,完成了光的波动说的全部理论。

1678年,他在法国科学院的一次演讲中公开反对了牛顿的光的微粒说。他说,如果光是微粒性的,那么光在交叉时就会因发生碰撞而改变方向。可当时人们并没有发现这一现象,而且利用微粒说解释折射现象,将得到与实际相矛盾的结果。因此,惠更斯在1690年出版的《光论》一书中正式提出了光的波动说,建立了著名的惠更斯原理。在此原理基础上,他推导出了光的反射和折射定律,圆满地解释了光速在光密介质中减小的原因,同时还解释了光进入冰洲石所产生的双折射现象,认为这是由于冰洲石分子微粒为椭圆形所致。

菲涅耳

菲涅耳(1788~1827年)是法国物理学家和铁路工程师。 1788年5月10日生于布罗利耶,1806年毕业于巴黎工艺学院,1809年又毕业于巴黎桥梁与公路学校。1823年当选为法国科学院院士,1825年被选为英国皇家学会会员。1827年7月14日因肺病医治无效而逝世,终年仅39岁。

菲涅耳的科学成就主要有两个方面。一是衍射。他以惠更斯原理和干涉原理为基础,用新的定量形式建立了惠更斯—菲涅耳原理,完善了光的衍射理论。他的实验具有很强的直观性、敏锐性,很多现仍通行的实验和光学元件都冠有菲涅耳的姓氏,如:双面镜干涉、波带片、菲涅耳透镜、圆孔衍射等。另一成就是偏振。他与D.F.J.阿拉果一起研究了偏振光的干涉,确定了光是横波(1821);他发现了光的圆偏振和椭圆偏振现象(1823),用波动说解释了偏振面的旋转;他推出了反射定律和折射定律的定量规律,即菲涅耳公式;解释了马吕斯的反射光偏振现象和双折射现象,奠定了晶体光学的基础。

菲涅耳由于在物理光学研究中的重大成就,被誉为“物理光学的缔造者”。

伦琴

威尔姆·康拉德·伦琴(1845~1923年),德国物理学家,1845年3月27日生于莱纳普,三岁时全家迁居荷兰并入荷兰籍。1865年迁居瑞士苏黎世,伦琴进入苏黎世联邦工业大学机械工程系,1868年毕业。1869年获苏黎世大学博士学位,并担任了物理学教授A.孔脱的助手;1870年随同孔脱返回德国,1871年随他到维尔茨堡大学,1872年又随他到斯特拉斯堡大学工作。1894年任维尔茨堡大学校长,1900年任慕尼黑大学物理学教授和物理研究所主任。1923年2月10日在慕尼黑逝世。

伦琴一生在物理学许多领域中进行过实验研究工作,如对电介质在充电的电容器中运动时的磁效应、气体的比热容、晶体的导热性、热释电和压电现象、光的偏振面在气体中的旋转、光与电的关系、物质的弹性、毛细现象等方面的研究都作出了一定的贡献,由于他发现X射线而赢得了巨大的荣誉,以致这些贡献大多不为人所注意。

1895年11月8日,伦琴在进行阴极射线的实验时第一次注意到放在射线管附近的氰亚铂酸钡小屏上发出微光。经过几天废寝忘食的研究,他确定了荧光屏的发光是由于射线管中发出的某种射线所致。因为当时对于这种射线的本质和属性还了解得很少,所以他称它为X射线,表示未知的意思。同年12月28日,《维尔茨堡物理学医学学会会刊》发表了他关于这一发现的第一篇报告。他对这种射线继续进行研究,先后于1896年和1897年又发表了新的论文。1896年1月23日,伦琴在自己的研究所中作了第一次报告,报告结束时,用X射线拍摄了维尔茨堡大学著名解剖学教授克利克尔一只手的照片;克利克尔带头向伦琴欢呼三次,并建议将这种射线命名为伦琴射线。

此时,发现X射线的新闻在全世界引起了巨大的震动。当时人们对这些射线的无限惊讶:几乎任何东西对它们来说都是透明的,用这些射线人们可以看见自己的骨骼。没有肉但是带有指环的手指,十分清楚,像嵌入体内的子弹一样。人们立即就领悟到它对医学的影响。1月23日,伦琴为物理医学学会作了关于他的发现的惟一的一次公开讲演。人们以暴风雨般的掌声向他致意。以那时的知识来说,伦琴关于X射线的工作是完全够格的了,但他没有理解X射线的性质。1895年伦琴的著名论文的最后,他写道:这些新射线不会是以太的纵振动吧?我必须承认在我的研究过程中我越来越相信了,因此对我来说应该宣布我的猜测,虽然我很清楚这种解释需要进一步的确证。这个“进一步的确证”始终没有得到,而且,花了整整十六年,依靠了马克斯·冯·劳厄和弗里德里希以及克尼平的工作才解决了关于X射线性质的争论。

在发现了X射线后的数月中,伦琴收到了来自世界各地的讲学邀请,但是除了一个例外他谢绝了所有的邀请,因为他要继续研究他的X射线。他给请他去演示新射线的同行们写了短信,表达他的歉意,说明他没有时间作任何报告或表演。惟一的例外是对皇帝,1896年1月13日,他给皇帝演示了他的X射线。要给皇帝表演这件事一直使伦琴感到紧张,“我希望我使用这个管子时将托皇帝之福,遇上好运气”,他说,“因为这些管子是非常易碎的,经常被损坏,抽空一根管子需要四天。”但是没有出什么事。伦琴收到的这样一种去宫廷的邀请,除了讲演和演示之外,还要与皇帝一同进餐,接受一枚勋章(二级王冠勋章)。离去时,为了表示对陛下的尊敬,还得退着走出来。关于这一点,理查德·威尔斯泰特,对叶绿素复杂机制作出解释的有机化学家说,他和氨的合成者弗里茨·哈贝尔,在取得了他们的发现后,也曾期待着皇帝的邀请。所以他们练习倒退着走路。威尔斯泰特是一位精制瓷器的收集者,在他们练习倒走的房间里有一只昂贵的瓷瓶,不出所料,他们的练习以这只瓷瓶被打碎而告终。虽然他们没有受到皇帝邀请,但他们所做的练习并不是徒劳无益的。后来两人都获得了诺贝尔奖。按照礼节,在他们从瑞典国王手中接过奖品之后必须倒退着走路。伦琴发现了X射线之后,物理学家和医学界人士赶紧研究这种新的射线,在1896年已有1000篇以上关于这个课题的论文。在1896至1897年间,伦琴自己只写了两篇关于X射线的文章。然后,他回到原先研究的课题上去,在以后的24年里写过7篇只引起短暂兴趣的文章,而把对X射线的研究让给了其他年轻的新生力量。对他这样的做法的理由,人们只能推测而已。1901年伦琴获得了第一个物理学诺贝尔奖。1900年他已搬到了慕尼黑,在那里,他成为实验物理研究所所长。1914年,他在著名的德国科学家表示他们与军国主义德国休戚相关的宣言上签了名,但后来他对此感到懊悔。在第一次世界大战期间和随后的通货膨胀中,他相当苦恼。1923年2月10日,伦琴在慕尼黑逝世,享年78岁。

阿尔伯特·亚伯拉罕·迈克尔逊

迈克尔逊(1852~1931年)因发明精密光学仪器和借助这些仪器在光谱学和度量学的研究工作中所做出的贡献,被授予了1907年度诺贝尔物理学奖。

迈克尔逊,1852 年12月19日出生于普鲁士斯特雷诺(现属波兰),童年随父母随居美国。受旧金山男子中学校长的引导,迈克尔逊对科学特别是光学和声学发生了兴趣,并展示了自己的实验才能。1869年被选拔到美国安纳波利斯海军学院学习。毕业后曾任该校物理和化学讲师。1880~1882年被批准到欧洲攻读研究生,先后到柏林大学、海德堡大学、法兰西学院学习。1883年任俄亥俄州克利夫兰市开斯应用科学学院物理学教授。1889年成为麻省伍斯特的克拉克大学的物理学教授,在这里着手进行计量学的一项宏伟计划。1892年改任芝加哥大学物理学教授,后任该校第一任物理系主任,在这里他培养了对天文光谱学的兴趣。1910~1911年担任美国科学促进会主席,1923~1927年担任美国科学院院长。1931年5月9日因脑溢血于加利福尼亚州的帕萨迪纳逝世,终年79岁。

迈克尔逊的名字是和迈克尔逊干涉仪及迈克尔逊—莫雷实验联系在一起的,实际上这也是迈克尔逊一生中最重要的贡献。在迈克尔逊的时代,人们认为光和一切电磁波必须借助绝对静止的“以太”进行传播,而“以太”是否存在以及是否具有静止的特性,在当时还是一个谜。有人试图测量地球对静止“以太”的运动所引起的“以太风”,来证明以太的存在和具有静止的特性,但由于仪器精度所限,遇到了困难。麦克斯韦曾于1879年写信给美国航海年历局的D.P.托德,建议用罗默的天文学方法研究这一问题。迈克尔逊知道这一情况后,决心设计出一种灵敏度提高到亿分之一的方法,测出有关的效应。

1881年他在柏林大学亥姆霍兹实验室工作,为此他发明了高精度的迈克尔逊干涉仪,进行了著名的以太漂移实验。他认为若地球绕太阳公转相对于以太运动时,其平行于地球运动方向和垂直地球运动方向上,光通过相等距离所需时间不同,因此在仪器转动90°时,前后两次所产生的干涉必有0.04条条纹移动。1881年迈克尔逊用最初建造的干涉仪进行实验,这台仪器的光学部分用蜡封在平台上,调节很不方便,测量一个数据往往要好几小时。实验得出了否定结果。1884年在访美的瑞利、开尔文等的鼓励下,他和化学家莫雷合作,提高干涉仪的灵敏度,得到的结果仍然是否定的。1887年他们继续改进仪器,光路增加到11米,花了整整5天时间,仔细地观察地球沿轨道与静止以太之间的相对运动,结果仍然是否定的。这一实验引起科学家的震惊和关注,与热辐射中的“紫外灾难”并称为“科学史上的两朵乌云”。随后有10多人前后重复这一实验,历时50年之久。对它的进一步研究,导致了物理学的新发展。

迈克尔逊的另一项重要贡献是对光速的测定。早在海军学院工作时,由于航海的实际需要,他对光速的测定开始感兴趣,1879年开始光速的测定工作。他是继菲佐、傅科、科纽之后,第四个在地面测定光速的。他得到了岳父的赠款和政府的资助,使他能够有条件改进实验装置。他用正八角钢质棱镜代替傅科实验中的旋转镜,由此使光路延长600米。返回光的位移达133毫米,提高了精度,改进了傅科的方法。他多次并持续进行光速的测定工作,其中最精确的测定值是在1924~1926年,在南加利福尼亚山间约35千米长的光路上进行的,其值为(299796±4)千米/秒。迈克尔逊从不满足已达到的精度,总是不断改进,反复实验,孜孜不倦,精益求精,整整花了半个世纪的时间,最后在一次精心设计的光速测定过程中,不幸因中风而去世,后来由他的同事发表了这次测量结果。他确实是用毕生的精力献身于光速的测定工作。

1920年迈克尔逊和天文学家F.G.皮斯合作,把一台20英尺(约6米)的干涉仪放在100英寸(约254米)反射望远镜后面,构成了恒星干涉仪,用它测量了恒星参宿四(即猎户座一等变光星)的直径,它的直径相当大,为2.50×108英里(1英里=1.6093千米),约为太阳直径的300倍。此方法后被用来测定其他恒星的直径。

迈克尔逊的第一个重要贡献是发明了迈克尔逊干涉仪,并用它完成了著名的迈克尔逊—莫雷实验。按照经典物理学理论,光乃至一切电磁波必须借助静止的以太来传播。地球的公转产生相对于以太的运动,因而在地球上两个垂直的方向上,光通过同一距离的时间应当不同,这一差异在迈克尔逊干涉仪上应产生0.04个干涉条纹移动。1881年,迈克耳逊在实验中未观察到这种条纹移动。1887年,迈克尔逊和著名化学家莫雷合作,改进了实验装置,但仍未发现条纹有任何移动。这次实验的结果暴露了以太理论的缺陷,动摇了经典物理学的基础,为狭义相对论的建立铺平了道路。

迈克尔逊是第一个倡导用光波的波长作为长度基准的科学家。1892年迈克尔逊利用特制的干涉仪,以法国的米原器为标准,在温度15℃、压力760毫米汞柱的条件下,测定了镉红线波长是6438.4696埃,于是,1米等于1553164倍镉红线波长。这是人类首次获得了一种永远不变且毁坏不了的长度基准。

在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。迈克尔逊还运用自己发明的“可见度曲线法”对谱线形状与压力的关系、谱线展宽与分子自身运动的关系作了详细研究,其成果对现代分子物理学、原子光谱和激光光谱学等新兴学科都产生了重大影响。1898年,他发明了一种阶梯光栅来研究塞曼效应,其分辨本领远远高于普通的衍射光栅。

迈克尔逊是一位出色的实验物理学家,他所完成的实验都以设计精巧、精确度高而闻名,爱因斯坦曾赞誉他为“科学中的艺术家”。

李普曼

李普曼(1845~1921年)因发明基于干涉现象的彩色照相术,获得了1908年度诺贝尔物理学奖。

李普曼是法国著名的物理学家,1845年8月16日出生于卢森堡。父亲是洛林人,母亲是阿尔萨斯人。他俩都在卢森堡的贵族官府里当家庭教师,生活是优裕的。但是他们深感自己是法国人,理应使儿子在祖国的怀抱里教养成人。在李普曼三岁时,尽管主人再三挽留,他的父母还是辞职离开了卢森堡,回到法国,在巴黎文化气氛最浓厚的拉丁区安了家。

李普曼生在这样一个书香之家,父母又都是踏踏实实、谦虚谨慎、有教养的人。他们对待学问的态度是严肃认真、一丝不苟的。这对李普曼思想品德的形成起了潜移默化的作用。李普曼胸怀大志,又能埋头苦干。他在1868年考上了巴黎高等师范学校教育系,但是由于他对数理表现出很浓厚的兴趣,所以在第二年就转入物理系。在此后的10年里,他对物理学各方面都有所探究,特别是对实验物理学做出了很多贡献。1882年,他应聘当了巴黎大学数理教授,后来由于他在实验物理学方面取得了优异成绩而名扬国内外。1886年他被选为法国科学院院士。

1891年,李普曼发明了彩色照片的复制方法,即彩色照相干涉法。该法不用染料和颜料,而是利用各种不同波长的天然颜色。李普曼是这样描述他的彩色照相法的:“把带有灵敏照相胶片的平板放入一个装有水银的盒子中,在曝光期间,水银与该灵敏的胶片接触,形成了一个反射面。曝光后,按照普通方法把感光板进行处理,待该板干了以后,颜色就出现了。这种色彩可以通过反射看见,且永久不褪,这一结果是因为在灵敏胶片内部发生了干涉现象。在曝光期间,入射光与被反射面反射的光线发生干涉,从而在半个波长处形成了干涉条纹。正是这些条纹通过照相法记录在胶片中,从而留下了投射光线特征。当以后用白光照射观察底片时,由于选择反射的原因,底片上的每一点只把那些已记录在其上经过选择了的颜色反射到人们眼中,而其他颜色都通过干涉相消。因此,人们在照片上每一点都看到了像所呈现的颜色,而这仅仅是一种选择反射现象。照片本身是由没有彩色的物质构成的。”

由于这种彩色照相干涉法需要较长的曝光时间,而且产生的颜色不饱和,因而这一方法最终被麦克斯韦的三色照相法所取代,但仍是彩色摄影进展中的重要一步。

李普曼在物理学上造诣很深,研究的范围也很广,特别是电学、热学、光学和光电学的研究,成绩卓著,当时欧洲科学界公认他是权威。

1912年,李普曼被选为法国科学院院长。1921年,李普曼去加拿大和美国讲学,在国外生了病,返回途中于7月13日逝世。

拉曼

拉曼(1888~1970年),因光散射方面的研究工作和拉曼效应的发现,获得了1930年度的诺贝尔物理学奖。

拉曼是印度人,是第一位获得诺贝尔物理学奖的亚洲科学家。拉曼还是一位教育家,他从事研究生的培养工作,并将其中很多优秀人才输送到印度的许多重要岗位。

拉曼1888年11月7日出生于印度南部的特里奇诺波利。父亲是一位大学数学、物理教授,自幼对他进行科学启蒙教育,培养他对音乐和乐器的爱好。

拉曼天资出众,16岁大学毕业,以第一名获物理学金奖。19岁又以优异成绩获硕士学位。1906年,他仅18岁,就在英国著名科学杂志《自然》发表了论文,是关于光的衍射效应的。由于生病,拉曼失去了去英国某个著名大学作博士论文的机会。独立前的印度,如果没有取得英国的博士学位,就没有资格在科学文化界任职。但会计行业是惟一的例外,不需先到英国受训。于是拉曼就投考财政部以谋求职业,结果获得第一名,被授予总会计助理的职务。

拉曼在财政部工作很出色,担负的责任也越来越重,但他并不想沉浸在官场之中。他念念不忘自己的科学目标,把业余时间全部用于继续研究声学和乐器理论。加尔各答有一所学术机构,叫印度科学教育协会,里面有实验室,拉曼就在这里开展他的声学和光学研究。经过10年的努力,拉曼在没有高级科研人员指导的条件下,靠自己的努力作出了一系列成果,也发表了许多论文。

1917年,加尔各答大学破例邀请他担任物理学教授,使他从此能专心致力于科学研究。他在加尔各答大学任教16年期间,仍在印度科学教育协会进行实验,不断有学生、教师和访问学者到这里来向他学习、与他合作,逐渐形成了以他为核心的学术团体。许多人在他的榜样和成就的激励下,走上了科学研究的道路。其中有著名的物理学家沙哈和玻色。这时,加尔各答正在形成印度的科学研究中心,加尔各答大学和拉曼小组在这里面成了众望所归的核心。1921年,由拉曼代表加尔各答大学去英国讲学,说明了他们的成果已经得到了国际上的认同。

1934年,拉曼和其他学者一起创建了印度科学院,并亲任院长。1947年,又创建拉曼研究所。他在发展印度的科学事业上立下了丰功伟绩。拉曼抓住分子散射这一课题是很有眼力的。在他持续多年的努力中,显然贯穿着一个思想,这就是:针对理论的薄弱环节,坚持不懈地进行基础研究。拉曼很重视发掘人才,从印度科学教育协会到拉曼研究所,在他的周围总是不断涌现着一批批富有才华的学生和合作者。就以光散射这一课题统计,在30年中间,前后就有66名学者从他的实验室发表了377篇论文。他对学生淳淳善诱,深受学生敬仰和爱戴。拉曼爱好音乐,也很爱鲜花异石。他研究金刚石的结构,耗去了他所得奖金的大部分。晚年致力于对花卉进行光谱分析。在他80寿辰时,出版了他的专集:《视觉生理学》。拉曼喜爱玫瑰胜于一切,他拥有一座玫瑰花园。拉曼1970年逝世,享年82岁,按照他生前的意愿火葬于他的花园里。

在X射线的康普顿效应发现以后,海森堡曾于1925年预言:可见光也会有类似的效应。1928年,拉曼在《一种新的辐射》一文中指出:当单色光定向地通过透明物质时,会有一些光受到散射。散射光的光谱,除了含有原来波长的一些光以外,还含有一些弱的光,其波长与原来光的波长相差一个恒定的数量。这种单色光被介质分子散射后频率发生改变的现象,称为并合散射效应,又称为拉曼效应。这一发现,很快就得到了公认。英国皇家学会正式称之为“20年代实验物理学中最卓越的三四个发现之一”。

拉曼效应为光的量子理论提供了新的证据。后人研究表明,拉曼效应对于研究分子结构和进行化学分析都是非常重要的。

在光的散射现象中有一特殊效应,和X射线散射的康普顿效应类似,光的频率在散射后会发生变化。频率的变化决定于散射物质的特性。这就是拉曼效应,是拉曼在研究光的散射过程中于1928年发现的。在拉曼和他的合作者宣布发现这一效应之后几个月,前苏联的兰兹伯格和曼德尔斯坦也独立地发现了这一效应,他们称之为联合散射。拉曼光谱是入射光子和分子相碰撞时,分子的振动能量或转动能量和光子能量叠加的结果,利用拉曼光谱可以把处于红外区的分子能谱转移到可见光区来观测。因此拉曼光谱作为红外光谱的补充,是研究分子结构的有力武器。

世界上十大科学家

1、艾萨克-牛顿:艾萨克-牛顿是英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。不仅发现了“万有引力”,还对现代工程学的发展奠定了基础;在光学领域中,他发明了反射望远镜,得出了颜色理论,除此之外他在其他领域也有不少成果。

世界史上10大科学家,牛顿和爱因斯坦领衔

2、阿尔伯特-爱因斯坦:爱因斯坦对科学领域的贡献是一句话概括不了的,他先后创立了狭义相对论与广义相对论,并解释了光电效应,在1921年荣获诺贝尔物理奖,对整个科学领域的发展起到了决定性作用,有着“世纪伟人”的称号。

世界史上10大科学家,牛顿和爱因斯坦领衔

3、詹姆斯-克拉克-麦克斯韦:詹姆斯-克拉克-麦克斯韦毕业于剑桥大学,他在物理和数学这两大领域有着非常大的成就,早在19世纪使其就预言了电磁波的存在 ,并创立了经典电动力学和麦克斯韦方程组。

世界史上10大科学家,牛顿和爱因斯坦领衔

4、尼尔斯-亨利克-戴维-玻尔:尼尔斯-亨利克-戴维-玻尔是丹麦著名科学家,对于整个20世纪科学的发展起到了决定性的作用,还创立了闻名的哥本哈根学派,在1922年荣获贝尔物理学奖。

世界史上10大科学家,牛顿和爱因斯坦领衔

5、亨利-卡文迪许:亨利-卡文迪许是英国著名的化学家和物理学家,确定了水的成分,并发现了硝酸,还测出引力常量,并且也是世界上第一个对地球进行称量的人。

世界史上10大科学家,牛顿和爱因斯坦领衔

6、伽利略-伽利雷:伽利略-伽利雷对于近代科学的发展起到了非常大的作用,堪称是奠基人一般的存在,他发现了自由落体定律,并论证出了日心说。

世界史上10大科学家,牛顿和爱因斯坦领衔

7、理查德-费曼:理查德-费曼是美籍犹太裔物理学家,加州理工学院物理学教授,1965年诺贝尔物理奖得主。提出了费曼图、费曼规则和重正化的计算方法,这是研究量子电动力学和粒子物理学不可缺少的工具。他被认为是爱因斯坦之后最睿智的理论物理学家,也是第一位提出纳米概念的人。

世界史上10大科学家,牛顿和爱因斯坦领衔

8、保罗-狄拉克:保罗-狄拉克是英国著名科学家,他在量子力学领域的贡献是非常重大的,并且还提出了反物质的存在,因此被冠以是“量子力学的奠基者”,1933年和薛定谔共同获得了诺贝尔物理学奖。

世界史上10大科学家,牛顿和爱因斯坦领衔

9、马克斯-普朗克:马克斯-普朗克是德国著名科学家,毕业于柏林大学,它创立了著名的量子力学,对于整个物理领域的发展起到了决定性作用,也是德国最具代表性的物理学者,于1918年荣获诺贝尔物理学奖。

世界史上10大科学家,牛顿和爱因斯坦领衔

10、迈克尔-法拉第:法拉第有着“电学之父”的称号,他是最早提出电磁感应学说的人,并且发现了电场和磁场之间的关联,对于电磁学的发展做出了巨大贡献,电动机和发电机的发明者也正是法拉第。

世界十大杰出著名物理学家

随着时代的更迭进发,涌现出许多具有非凡影响力的人,在物理领域也不例外,我在这里整理了世界十大杰出或著名的物理学家的相关知识,快来一起学习学习吧!

目录

世界十大杰出著名物理学家

高中 物理 学习 方法

物理常考的密度测量

世界十大杰出著名物理学家

牛顿

艾萨克·牛顿(1643年1月4日—1727年3月31日),英国著名的物理学家, 百科 全书式的"全才",著有《自然哲学的数学原理》、《光学》。

他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。他通过论证开普勒定律与引力理论间的一致性,展示了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说提供了强有力的理论支持。

在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律。

在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。他还系统地表述了冷却定律,并研究了音速。

在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他证明了广义二项式定理,提出了"牛顿法"以趋近函数的零点,并为幂级数的研究做出了贡献。

爱因斯坦

阿尔伯特·爱因斯坦(1879年3月14日-1955年4月18日),20世纪伟大的犹太裔理论物理学家,创立了狭义相对论,广义相对论、光电效应、能量守恒理论、现代物理学的两大支柱之一(另一个是量子力学)。虽然爱因斯坦的质能方程E = mc2 最著称于世,他是因为"对理论物理的贡献,特别是发现了光电效应而获得1921年诺贝尔物理学奖。

伽利略

伽利略(Galileo Galilei,1564-02-15-1642-01-08)。意大利数学家、物理学家、天文学家,科学革命的先驱。他第一个在科学实验的基础上融汇贯通了数学、物理学和天文学三门知识,扩大、加深并改变了人类对物质运动和宇宙的认识 。伽利略从实验中 总结 出自由落体定律、惯性定律和伽利略相对性原理等。从而推翻了亚里士多德物理学的许多臆断,奠定了经典力学的基础,反驳了托勒密的地心体系,有力地支持了哥白尼的日心学说 。他以系统的实验和观察推翻了纯属思辨传统的自然观,开创了以实验事实为根据并具有严密逻辑体系的近代科学。因此被誉为"近代力学之父"

爱迪生

爱迪生(1847~1931)是举世闻名的美国电学家和发明家,被誉为"世界发明大王"在美国的100位人物中排第9名。他除了在留声机、电灯、电话、电报、电影等方面的发明和贡献以外,在矿业、建筑业、化工等领域也有不少著名的创造和真知灼见。爱迪生一生共有约两千项创造发明,为人类的文明和进步作出了巨大的贡献。

瓦特

詹姆斯·瓦特(James Watt,1736年1月19日 — 1819年8月25日)英国发明家,第一次工业革命的重要人物。

1776年制造出第一台有实用价值的蒸汽机。以后又经过一系列重大改进,使之成为"万能的原动机",在工业上得到广泛应用。他开辟了人类利用能源新时代,使人类进入"蒸汽时代"。后人为了纪念这位伟大的发明家,把功率的单位定为"瓦特"(简称"瓦",符号W)。

法拉第

迈克尔·法拉第 (Michael Faraday,1791年9月22日~1867年8月25日),英国物理学家、化学家。1831年,他作出了关于电力场的关键性突破,永远改变了人类文明。[1]

迈克尔·法拉第是英国著名化学家戴维的学生和助手,他的发现奠定了电磁学的基础,是麦克斯韦的先导。1831年10月17日,法拉第首次发现电磁感应现象,并进而得到产生交流电的方法。1831年10月28日法拉第发明了圆盘发电机,是人类创造出的第一个发电机。

由于他在电磁学方面做出了伟大贡献,被称为"电学之父"和"交流电之父"。

麦克斯韦

詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell,18311879),出生于苏格兰爱丁堡,英国物理学家、数学家。经典电动力学的创始人,统计物理学的奠基人 。

1873年出版的《论电和磁》,也被尊为继牛顿《自然哲学的数学原理》之后的一部最重要的物理学经典。麦克斯韦被普遍认为是对物理学最有影响力的物理学家之一。没有电磁学就没有现代电工学,也就不可能有现代文明。

狄拉克

保罗·狄拉克,OM,FRS(Paul Adrien Maurice Dirac,1902年8月8日-1984年10月20日),英国理论物理学家,量子力学的奠基者之一,并对量子电动力学早期的发展作出重要贡献。

他给出的狄拉克方程可以描述费米子的物理行为,并且预测了反物质的存在。

1933年,因为"发现了在原子理论里很有用的新形式"(即量子力学的基本方程——薛定谔方程和狄拉克方程),狄拉克和埃尔温·薛定谔共同获得了诺贝尔物理学奖。

道尔顿

约翰·道尔顿(John Dalton,1766年9月6日-1844年7月27日),英国化学家、物理学家。近代原子理论的提出者。 附带一提的是道尔顿患有色盲症。这种病的症状引起了他的好奇心。他开始研究这个课题,最终发表了一篇关于色盲的论文──曾经问世的第一篇有关色盲的论文。后人为了纪念他,又把色盲症叫做道尔顿症。[1]

道尔顿一生宣读和发表过116篇论文,主要著作有《化学哲学的新体系》两册[2]。

霍金

斯蒂芬·威廉·霍金(Stephen William Hawking,1942年1月8日~2018年3月14日),出生于英国牛津,英国剑桥大学著名物理学家,现代最伟大的物理学家之一、20世纪享有国际盛誉的伟人之一。

霍金21岁时患上肌肉萎缩性侧索硬化症(卢伽雷氏症),全身瘫痪,不能言语,手部只有三根手指可以活动。1979至2009年任卢卡斯数学教授,主要研究领域是宇宙论和黑洞,证明了广义相对论的奇性定理和黑洞面积定理,提出了黑洞蒸发理论和无边界的霍金宇宙模型,在统一20世纪物理学的两大基础理论——爱因斯坦创立的相对论和普朗克创立的量子力学方面走出了重要一步。

2017年11月,霍金预言2600年能源消耗增加,地球或将变成"火球"。

高中物理学习方法

许多刚进入高中的学生学习物理时感到很不适应,因为与初中相比,高中物理内容更丰富,难度更大,能力要求更高,这就需要学生的灵活性。许多高中生在学习物体的运动和力学方面感觉很简单。当他们学习重力运动、力学问题和什么曲线运动时,他们开始感到无力。物理性能下降到低潮。他们慢慢地厌倦了物理。即使他们提到物理,他们会感到头痛,这会使他们疏远。物理!

所以我们必须积极变化的物理 学习态度 和学习方法,让自己尽可能适应高中物理。下面是如何学习一些高中物理上的意见和建议。

首先,我们应该减少起点,从零开始。

我们必须改变观念,不要认为初中物理是好的,高中物理一定会好的。初中物理知识是肤浅的,只要用大脑来学习,再通过大量的练习,反复强化训练,身体素质也会提高,物理成绩也会稳步提高。这样说,高分并不意味着好的学习。如果你想学好物理,你需要学生对物理有很强的兴趣,加上良好的学习方法,这两个条件是必不可少的。所以我们要转变观念,踏踏实实地学习,稳步前进!

二。对物理有浓厚的兴趣。

兴趣是思维的动力之一,兴趣是一种强大而持久的学习动机,兴趣是学好物理的潜在动机。从学生的角度看,培养兴趣的途径有很多:应该注意的是,物理学与日常生活、生产、现代科学技术有着密切的联系,密切的联系在一起。在我们身边有很多物理现象,运用了很多物理知识,如:说话时,声带在空气中振动形成声波,声波传到耳朵,引起耳膜振动,产生听觉;当饮用沸水、饮水、墨水笔、大气压时有所帮助;行走时,脚与地之间的静态摩擦有所帮助。将杂货从米中移除,用浮力知识,用直筷子斜入水中,看上去就像筷子在水中弯曲、闪电形成等。在实践中有意识地与物理知识相联系,并将物理知识应用于实践,这样我们就可以清楚地表明,物理与我们有着密切的联系,因此它是有用的。能极大地激发人们学习物理的兴趣。从教师的角度看:通过生动的学生熟悉实例,视觉实验,组织学生进行实验操作,引入物理概念和规律,使学生感受到物理与日常生活密切相关;本文根据教材的内容,向学生介绍了物理学的历史和进步,以及物理学在现代化建设中的广泛应用,使学生能够看到物理学的应用,明确今天的学习是为了明天的应用。根据教材内容,选择学生介绍中外物理学家探索物理世界的生动物理 典故 、轶事和神秘 故事 ,并根据教学需要和学生智力发展水平,提出了一些有趣的思考问题。教师从这些方面,也可以使学生被动地对物理感兴趣,激发学生学习物理的热情。

三、提高学习效率。

在学习中,上课时间是非常重要的。因此,听力的效率决定了听力学习的基本情况,为了提高听力的效率,应该注意以下几个方面。

1. 课前预习 可以提高听力的针对性。预习中发现的困难是听课的关键,为了减少听力过程中的盲目性和被动性,我们可以弥补旧知识和新知识,从而提高课堂效率。预习后对知识的理解与教师的讲解进行比较,分析可以提高他们的思维水平,预习也可以培养自己的自学能力。

倾听集中的过程,而不是抛弃。专注是对课堂学习的奉献,是对耳朵、对眼、对心、对嘴、对手的奉献。如果你能做到这“五到”,就会高度集中,课堂上学习到的所有重要内容都会在他脑海中留下深刻印象。在讲课的过程中,要确保你们能集中注意力,不偏离对方。我们必须注意课前休息10分钟,不要做太激烈的运动或激烈的 辩论 或阅读小说或家庭作业,以免课后喘息、幻想、无法平静,甚至大脑开始睡觉。因此,我们应该做好上课前的物质准备和心理准备。

3,要特别注意教师讲课的开始和结束。在一堂课的开始,老师概括地总结了上一课的要点,并指出这堂课的内容是连接旧知识与新知识的纽带。最后,教师通常总结一堂课的知识,这是高度概括的,是在理解的基础上掌握本课的知识和方法的概要。

4,做笔记。不会记录,但演讲中的重点,难点,使一个简单的总结记录,写下演讲的要点和自己的感受或创造性思维。审查和消化。

5.我们要认真审视问题,了解实际情况和物理过程,注意分析问题的思维和解决问题的方法,坚持从对方身上吸取教训,提高知识转移和解决问题的能力。

第四,做好工作的回顾和总结。

1,及时做好复习。课后,你必须好好复习一下这一天。复习的有效方法不仅是一遍遍地阅读书籍和笔记,而且还以令人难忘的方式复习它们。首先,我们应该把书和笔记结合起来,回忆老师在课堂上说的话。例如,我们应该分析问题的思路和方法(或者我们可以写在草稿上),并尽可能全面地思考。然后打开书本和 笔记本 ,比较哪些记忆不清楚,把它填满,以便巩固当天的课堂内容,还要检查当天的课堂听力效果,还要改进听力方法,提高听力效果。T 措施 。

2、做好章节复习工作。学习一章后要进行阶段性复习, 复习方法 也与及时复习一样,采取记忆式复习,然后与书、笔记进行比较,使其内容完善,并在之后做章节总编。

3.做好章节总结工作。该章的摘要应包括以下各节。本章的知识网络。主要内容、定理、规律、公式、解决问题的基本思想和方法、一般典型问题、物理模型等。自我体验:应记录本章中你所犯的典型问题,分析其原因和正确答案,并记录本章最有价值的思维方法或实例,以及仍然存在的未决问题。以补充未来。

4.做一个好的总体回顾。为了防止以前的知识遗忘,每隔一段时间,最好不要超过十天,要在复习前学会所有的知识,你可以阅读,阅读笔记,做问题,思考等等。

第五,正确处理练习。

许多学生把物理学的希望寄托在大量的学科上,并对海军作战进行了一些研究。这是不恰当的。”不要根据问题的数量来谈论英雄。重要的是不要做更多的问题,而是要达到高效率和高目标。提出问题的目的是检查所学的知识和方法是否得到很好的控制。如果你不能准确地掌握它,甚至偏离它,多做练习的结果会增强你的缺点。因此,有必要在准确掌握基本知识和方法的基础上进行一些练习。对于中级问题,我们应该注意问题的益处,即问题之后我们得到多少,这要求在问题之后进行一定的“ 反思 ”,思考本课题中所使用的基本知识,主要是针对知识点,哪些物理规律是选择、是否存在其他解决方案、分析方法和解决该问题。当你解决其他问题,不管你是否用过,把它们联系在一起,你会得到更多的 经验 和教训。更重要的是,你会养成一个良好的思维习惯,这将大大有利于你未来的学习。当然,没有一定的练习(老师布置的作业量),技能就无法形成,他们也不能形成。此外,无论是作业还是测试,准确度都应该放在第一位,方法应该放在第一位,而不是盲目追求速度,也是学好物理的一个重要方面。

六。也高度重视观察和实验。

物理知识来源于实践,尤其是观察和实验。要认真观察物理现象,分析物理现象产生的条件和原因。我们要认真做好物理学生的实验,学会使用仪器和处理数据,了解用实验研究问题的基本方法。通过观察和实验,我们应该有意识地提高我们的观察和实验能力。总之,只要我们是开放的,主动的,务实的,认真的,努力理解知识,多思考,多学习,强调科学的学习方法,把生活和生产与现实结合起来,注重知识的应用,就一定能学到高中物理。

物理常考的密度测量

(1)、液体的密度测量一般步骤

A、先用天平测出被测液体与烧杯的总质量m1;

B、把烧杯中的液体往量筒内倒一些,并测出其体积V;

C、再用天平测出烧杯中剩余液体与烧杯的总质量m2;

D、则被测液体的密度:ρ液=(m1-m2)/V。

中考物理实验题答题技巧

特别注意:若用天平先测出空烧杯的质量,然后往烧杯中倒入一些待测液体,并测出烧杯与待测液体的总质量,再将烧杯中的待测液体倒入量筒测其体积,因烧杯上会沾有一部分液体,造成所测的体积偏小,密度值偏大。

(2)、固体密度的一般测量步骤

A、先用天平测出待测固体的质量m;

B、往量筒内倒入适量的水,并测出其体积V1;

C、用细线系住待测物体放入量筒的水中,并测出水与待测固体的总体积V2;

D、则被测固体的密度:ρ固=m/V2-V1

特别注意:对于密度小于水的固体密度测量时,应在第三步的“用细线系住待测物体放入量筒的水中”后面加上“用细铁棒把待测物体压入水中”

2

天平使用中的几种特殊情况:

(1)、砝码磨损,则测量值偏大;砝码生锈,则测量值偏小;

(2)、游码没有归零,则测量值偏大;

(3)、天平没有调节平衡,指针偏右时:则测量值偏小;指针偏左时,则测量值偏大。

3

天平使用技巧:

(1)、放:把天平放在水平台上或水平桌面上。

(2)、拨:把游码拨到标尺左端零刻度处。

(3)、调:调节横梁两端的平衡螺母,使天平横梁水平位置平衡。

a、调节原则是:左偏右移、右偏左移。

b、判断横梁平衡的方法:指针静止时,指针指在分度盘中央线上;指针运动时,看它在分度盘中央线两端摆动幅度是否一样。

(4)、测:被测物体放在天平左盘,用镊子向天平右盘加减砝码(加减砝码原则:先大后小)并调节游码在标尺上的位置,直到天平恢复平衡。

(5)、读:被测物体的质量=右盘中砝码的总质量+游码在标尺上所对应的刻度值。

注意:当左码右物时,被测物体的质量=右盘中砝码的总质量-游码在标尺上所对应的刻度值。

(6)、收:称完后,把被测物体取下,用镊子把砝码放回砝码盒。

4

判断空、实心球的方法:(已铁球为例)

(1)、比较密度法:

具体做法是:根据题中已知条件,求出球的密度。ρ球=m球/V球,若ρ球=ρ铁,则该球是实心;若ρ球ρ铁,则该球是空心。

(2)、比较体积法:

具体做法是:先算出与球同质量的实心铁球的体积,V铁=m球/ρ铁。若V球=V铁,则该球是实心;若V球V铁,则则该球是空心。

(3)、比较质量法:

具体做法是:先算出与球同体积的实心铁球的质量,m铁=ρ铁x V球,若m铁=m球,则该球是实心;若m铁m球,则则该球是空心。

5

利用天平和容器测量液体密度的方法:

(1)、用天平测出空容器的质m1。

(2)、用天平测出容器装满水后的总质量m2。

(3)、将容器中的水全部倒出,装满待测液体,并用天平测出容器与待测液体的总质量m3。

(4)、则待测液体的密度ρ液=m液/V容=(m3-m1/m2-m1)ρ水。(V容=m2-m1/ρ水)。

6两种物质混合后的平均密度的计算公式是:ρ混=m混/V混=m1+m2/(V1+V2).7在求混合物质的含量问题时:必须把握m总=m1+m2和V总=V1+V2,列方程来解。8

判断物体运动状态的技巧:

(1)、选定一个参照物。

(2)、观察比较物体与参照物之间的位置有无发生变化。

(3)、若位置发生了变化,则说明物体相对与参照物是运动的;若位置没有发生变化,则说明物体相对与参照物是静止的。

9

换算单位的技巧:

(1)、大单位化小单位时,用原来的数值乘以它们的单位换算率。

如:m3换算dm3 4.6 m3=4.6x103=4.6x103 dm3

(2)、小单位化大单位时,用原来的数值除以它们的单位换算率。

如:23cm=?m 23cm=23/100=0.23m=2.3x10-1m

10

平均速度的几种特殊求法:

(1)、以不同的速度经过两段相同的路程的平均速度V=2V1V2/V1+V2;

(2)、以不同的速度经过两段相同的时间的平均速度V=(V1+V2)/2

(3)、过桥问题时,总路程=车长+桥长。即:平均速度=总路程/总时间=车长+桥长/总时间.

11

根据数值判断刻度尺的分度值的技巧:

具体做法是:数值后面的单位代表小数点前面那一位数的单位,从小数点后开始退,退到数值的倒数第二位,倒数第二位是什么位,该数值所用刻度尺的分度值就是1什么。如:256.346m 所用的刻度尺的分度值就是1cm。 34.567dm所用的刻度尺的分度值就是1mm。

12

惯性现象的解释步骤:

(1)、先看两物体原来处于何种运动状态。

(2)、再看其中一个物体的运动状态发生了怎样的变化。

(3)、另一个物体由于惯性保持原来的运动状态。

(4)、所以出现了什么情况。

如:拍打衣服上的灰尘:衣服与灰尘原来处于静止状态,用手拍打衣服后,衣服由静止变为运动,而灰尘由于惯性仍保持原来的静止状态,所以灰尘就从衣服中分离出来了。

13

相互作用力与平衡力区分的技巧:

关键看:两个力是作用在几个物体上了。相互作用力的两个力作用在两个物体上;平衡力的两个力作用在同一物体上了。

14

弹簧测力计在所用过程中应特别注意的:

(1)、测力计受力静止时,它的两端都受到力的作用,但测力计示数只表示其中一个力的大小。

(2)、弹簧的伸长是各个部分都在伸长,若弹簧断了,去掉断的部分,剩余部分受到同样大小的力伸长的长度比原来的要短,因此测量值偏小。

(3)、把测力计倒过来使用,测力计的示数表示的是物体的重力与测力计重力的和,物体的重力=测力计的示数-测力计的自身重力。

15

判断液面升降的技巧:

情况一、

1、从水中把物体捞到船上时有以下特点:

(1)、若ρ物 ρ水时:则水面上升。

(2)、若ρ物ρ水或ρ物=ρ水时:则水面不变。

2、从船上把物体扔到水里时有以下特点:

(1)、若ρ物 ρ水时:则水面下降。

(2)、若ρ物ρ水或ρ物=ρ水时:则水面不变。

情况二、一块冰浮在液面上,当冰全部融化后,液面变化有以下特点:

1、若ρ物 ρ液时:则液面上升。

2、若ρ物=ρ液时:则液面不变。

3、若ρ物ρ液时:则液面下降。

16

判断物体具有那种能的技巧:

(1)、判断物体是否具有动能,关键看物体是否在运动。

(2)、判断物体是否具有重力势能,关键看物体相对与参考面是否有高度。

(3)、判断物体是否具有弹性势能,关键看物体有没有发生弹性形变。

17

月球上的特点:

(1)、无大气。

(2)、无磁场。

(3)、弱重力。

(4)、昼夜温差大。

18

在太空和月球上不能做的事有:

(1)、指南针不能使用。

(2)、不能利用降落伞进行降落。

(3)、内燃机不能工作。

(4)、不能看到流星。

(5)、人不能面对面直接交谈。

19

在月球上会发生的事有:

(1)、可以用天平称物体质量。

(2)、人可以举起比自己重的物体。

(3)、人可以在上面用笔写字。

(4)、在月球上的机器不需要进行防腐、防锈处理。

(5)、在上面看天空是黑色的。

20

宇航服具有的特点:

(1)、供氧 (2)、耐压 (3)、密闭

(4)、保暖 (5)、抗射线。

21

为什么火箭用液氢做燃料?

(1)、氢的热值高。

(2)、燃烧后生成物是水,无污染。

(3)、液态氢便于储存和运输,可以节约空间,以便于储存更多的燃料。

22

火箭的整流罩应具备的特点:

(1)、熔点高 (2)、隔热性能好。

世界十大杰出著名物理学家相关 文章 :

★ 最著名的10大物理学家

★ 十大物理学家排名

★ 高智商名人阿尔伯特·爱因斯坦

★ 成功的物理学家爱因斯坦

★ 名人阿尔伯特·爱因斯坦人物介绍简短

★ 爱因斯坦为什么伟大

★ 关于史上十大高智商人物排行榜以及爱因斯坦的智商是多少

★ 高智商达人爱因斯坦的智商有多高

★ 最著名地理学家整理

★ 智商最高的十位天才

var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = ""; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();