奇闻异事
牟合方盖(牟合方盖怎么做)
牟合方盖指的是什么
牟合方盖是计算球体体积的方法。
牟合方盖就是当一个正立方体用圆规从纵横两侧面作内切圆柱体时,两圆柱体的公共部分。就是指由两个同样大小但轴心互相垂直的圆柱体相交而成的立体。是由我国古代数学家刘徽首先发现并采用的一种用于计算球体体积的方法。
牟合方盖的由来
我国著名的数学典书籍《九章算术》中记载了求已知体积的球体直径的方法,称之为“开立圆术”,“立圆”即为球体。
所谓“开立圆术”,书中载曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即丸径。”意思是说球体的半径等于九分之十六乘以体积再开立方,与此同时,也就得出了球的体积公式:十六分之九乘以半径的三次方。
当然,我们一眼就可以看出这个公式是错误的。可是我们应该知道任何一个数学公式,无论看起来多么简单,都是一代代数学家不多努力而得到的劳动成果。既然我们都看出了错误,更别提那些数学家们了。其中,魏晋时期数学家刘徽在为《九章算术》作注时便发现了其中的错误。
刘徽发现如果取兀等于3,所求球的体积则会比实际少;如果按兀等于4来计算的话,球的体积又会比实际的要多。二者之间虽有一定差异,但也可以互相通补。如果直接以十六分之九的比率来计算,误差则要大了许多。经过不断的钻研,刘徽创造了一个独特的立体图形,并希望通过这个图形求出球体的体积公式。
由于这个图形上下像两把对称的伞,总体又像一个牟合的方形盒子,故称为牟合方盖。据刘徽所作的《九章算术注》记载,刘徽构造了一个每个横切面都是正方形的立体图形,然后再构造一个与横切面在同一高度的圆形,总的来说,就是两个相同的圆柱体垂直相交得到的几何图形,刘徽将这个图形命名为“牟合方盖”。
当时刘徽已经推算出圆周率为3.1416,他也可以通过圆周率得出圆及它的外接正方形的面积比为兀:4,他希望通过类比推理证实证实《九章算术》中公式是错误的,并由此求出球体的体积公式。
刘徽通过计算证实了《九章算术》的错误,至于怎么得出的就不详细说明了,毕竟咱聊的是历史而非数学。与此同时,刘徽还希望通过“牟合方盖”求出球的体积,因为“牟合方盖”的体积跟其内接球体体积有极大的相关性。可惜,刘徽一生都没有解决这个问题,直到200年后这个问题才被彻底解决。
解决此问题的人便是南北朝时期杰出的数学家袓冲之及他的儿子祖暅,他们沿用了刘徽的思想,将原来的“牟合方盖”分为完全相同的八份,取八分之一进行研究。这个思想与著名的迪卡尔坐标系极为类似,这也验证了一个重要结论:人类文明发展的总体趋势都是朝着同一方向发展。
牟合方盖用来计算什么
牟合方盖是用来计算球体体积的方法。
所谓“牟合方盖”,就是指由两个同样大小但轴心互相垂直的圆柱体相交而成的立体。由于这立体的外形似两把上下对称的正方形雨伞,所以就称它为“牟合方盖”。在这个立体里面,可以内切一个半径和原本圆柱体一样大小的球体,刘徽并指出,由于内切圆的面积和外切正方形的面积之比为 π : 4,所以“牟合方盖”的体积与球体体积之比亦应为 π : 4。可惜的是,刘徽并没有求出“牟合方盖”的体积,所以亦不知道球体体积的计算公式。
牟合方盖的源起
《九章算术》中曾认为,球体的外切圆柱体积与球体体积之比等于正方形与其内切圆面积之比。《九章算术》的“少广”章的廿三及廿四两问中有所谓“开立圆术”,“立圆”的意是“球体”,古称“丸”,而“开立圆术”即求已知体积的球体的直径的方法。其中廿四问为:“又有积一万六千四百四十八亿六千六百四十三万七千五百尺。问为立圆径几何?”
开立圆术曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即丸径。”
牟合方盖是什么意思 《法语助手》法汉
牟合方盖是一种几何体,是两个等半径圆柱躺在平面上垂直相交的公共部分,因为像是两个方形的盖子合在一起,故名。
南北朝时,数学家祖冲之和其子祖暅之求出牟合方盖与球体体积。他们的求法纪录在唐代李淳风为九章算数作的注解中,留传至今。祖氏父子在此解释:所有等高处横截面积相等的两个同高立体,其体积也必然相等。这就是今天所称的「祖暅原理」。
- 上一篇:天下奇闻网(奇事奇闻网)
- 下一篇:返回列表